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I. INTRODUCTION
In a recent studyl, radar clutter results calculated via waveguide

methods were compared with Tappert's* backscatter results generated by using
parabolic equation and Monte Carlo methods. For the geometries and environ-
ments treated, the waveguide results generally broke down for ranges less than
about 8 km. In this study, ray methods along with results of first order
scatter theory are used to calculate clutter for ranges applicable to direct
illumination, which includes the aforesaid ranges which are inaccessible via
waveguide methods. A major question answered in this study is whether any
semblance of continuity exists between the ray and waveguide calculations in
their region of overlap.

As was the case with the study presented in reference 1, the present
development depends heavily upon first order scatter theory from a rough sur-

face as developed by Ulaby, Moore, and Fungz. In particular, first order

theory is applied to capillary waves on an otherwise flat surface. In ac-
tuality the capilliary waves ride on long wavelength waves which effect a
tilting of the surface, thereby altering the local angle of incidence.
Additionally, the long wavelength waves shadow portions of the scattering sur-
face. Awareness of these effects has given rise to the so called "composite

surface model" used extensively for within the line of sight calculations in

nonducting environmentssJ. Apart from the horizontal stratification of the

media allowed for in the present study, the present development is similar to

5

the line of sight calculations of Chan and Fung” and McDaniel’ though no at-

tempt is made here to compare with their radar cross section results.

ar '

*This citation refers to a hand-written report prepared by Dr. F. D. Tappert ‘ ' '
g

of the University of Miami, while working at NOSC during the summer of 1989. .. ‘

For further information, please contact R. A. Pappert, Code 542, or H. V.

T

Hitney, Code 543, Naval Ocean Systems Center, San Diego, CA. p\ii”‘»‘b“ “isn/ I
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An outline of the theory for path loss development is given in the fol-
lowing section. Section III contains comparisons of backscatter results
obtained via ray, waveguide, and parabolic equation (Tappert) methods at 9.6
GHz for a transmitter at an altitude of 25 m. The results are for the stan-
dard atmosphere and evaporation ducts of 14 and 28 m with wind speeds of 10,

20, 30, and 40 knots. Section IV contains concluding remarks.
II. PATH LOSS DEVELOPMENT

Since much of the present section follows the formalism of section II of
reference 1, only differences and salient features of the development will be
reported here. A rectangular coordinate system is assumed with x the range
variable, z the altitude variable with z = 0 corresponding to ground level.
Horizontal polarization is assumed. The refractive index, assumed to be z de-
pendent, is taken to have unit value at the ground. In actuality, ground
values typically correspond to refractivities of several hundred, however
translation of the profile is permitted since ray bending depends upon
gradients of the refractive index profile. The ground surface is assumed to

be rippled, but otherwise flat, with a thin vacuum region immediatley above

it. Ulaby et 31.2 have treated, in considerable detail, the problem of first

order scatter from such a surface for plane wave incidence. In the high con-

ductivity limit (i.e. Ing- 1. > Sg), where n_ is the complex ground

g
refractive index and §, the sine of the grazing angle of the incident ray,

their result for the spectral decomposition of the scattered field due to a
unit amplitude incident wave in the x-z plane is (apart from a pulse envelope,

a time dependence exp(jwt) is assumed)

( ) ’ ’ ’ [} [ [ ’
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where
k = free space wavenumber,

So- sine of stationary phase grazing angle,

. Co- cosine of stationary phase grazing angle,

o2l 12 12,172
k= (k% k- kD),

z(x',y') = random function defining rippled surface.

Unless otherwise specified, MKS units are assumed.

(2)

(3)

(4)

(5)

(6)

Taking 2>0 in equa-

tion (1), the sign of the square root is taken to assure either upward

propagation or evanescence.

The broadside electric field, in the assumed vacuum region bordering the

surface, generated by a horizontal electric dipole, B, may in the ray ap-

proximation be written as8

Einc, (SOCO)l/Zexp(-jkq(eo,x) -jkao)
) y 02-c5) (x|, ) ) /2

The new quantities which appear in equation (7) are

2
M- EE?O, € free space permittivity,

np~ refractive index at the transmitter height,

(7

(8)

(9)




q(8,,%) = U: (n2(2)-c2)%az| (10)

z,= transmitter height. (11)

The vertical bars in equations (7) and (10) signify absolute values and the
double prime on q in equation (7) indicates the second derivative with respect

to the grazing angle, 8. The stationary phase angle is determined by the con-
dition

x - i 55 | Io (n?(2)-cAH2 qz |- 0 . (12)

In the present study, the height dependence of the refractive index is ap-
proximated by linear segments so that the integral of equation (10) can be
evaluated explicitly. For the 14 and 28 m evaporation duct environments used

in section III of this study, the linearized descriptions have been given by

Hitney?

In accordance with the assumed model, the amplitude of the indicent wave
in the thin vacuum layer at z=0 is simply the quantity which multiplies

exp(-jkcox) in equation (7). Inserting this into equation (1) yields

172
( S (S C)
E 8. . 2a? IIII 2 1/4 z(x',y’)exp(Jk (x-x')- jk y'-3k,z)

1
(x'|q”(9°.x')|)

177 exp(-1kq(8,,x’)-Jkx'Co)dk, dk dx'dy’ . (13)




Using transformations given by equations (22) through (24) and by equa-

tions (26) through (28) of reference 1, equation (13) above becomes

w 1/2
g(s). . i%EM I Idx,dy.so(soco) _2(x'.y")
Yy n
-

(m2-c2)%x 1q" e ,x") )

1/2

+J o
. J"s%ugz)(er)exp(-jsz)de, (14)
-jm

where Héz)is the Hankel function of order zero of the second kind and

1/2'

r-(x—x')2+y'2) Taking x=0, r will be approximated by x', which seems

reasonable for beam widths much less than one radian.

When multiplied by the factor, -jk/2, the integral over 8 in equation
(14), apart from the factor S, is simply the free space Green’'s function for
scatter to the point (x,z) with z in the assumed vacuum region bordering the
surface. Thus, for a horizontally stratified environment, the following re-

placement for backscatter (i.e. x =0, z = zT) applies in the asymtotic limit

kx'>>1

1/2 ! 3 L
+jeo S (S .C) exp(-jkq(® ,x')-jkx’'C )
) i%—jﬂséﬂéz)(kx'C)exp(-jsz)de* T p(-Jka(8y 1/; 2% (15)
oo (n3-C5) 2 (x' |q"(8,,x" ) )
Making this replacement in equation (1l4) yields
2 © s C z(x',y')
(s). k™M ' qu 20 ' '
E o= dx'’'d exp(-2jkq(® _,x")2jkx’C ). (16)

Since




3.2
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where n is the free space impedance, the Poynting flux associated with the

scattered field is

4
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+ exp(-2jk(q(8,(x"),x")-q(8,(x"),x"))-2jk(C (x")x'-C (x")x")), (18)

where the explicit dependence of So’ Co’ 90 on range has been indicated and

where the braces, <>, denote an ensemble average.

Next let
- ’ " oy ' " l ] n l ' "
X =x'-x", y=y'-y", X =5(x'+x"), Y = 3(y'+y") , (19)
dx’dy’dx"dy"=dxdydXdY . (20)

Assuming z(x:y') is a homogeneous random function, the ensemble average
<z(x',y')z(x",y")> simply becomes p(i,?) where p is the surface correlation

function. Because Co= 1 and since significant contribution to the x integral

comes only from distances on the order of the surface corelation length (i.e.

on the order of centimeters), equation (18) may be approximated as follows:




o 4 - - -
4,.2 _ _ S (x) p(x,y)exp(-2jkx)
%Re<E§S)H§S)*> ~ - KM pe III dxdydxdy o2 0Y p(-2) . (21)
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where
g"(8,(X),X) = q"(8,(X),X)/S_(X) . (22)

Using the spectrum relationship
©
2«w(kx,ky) = II p(x,y)exp(-jkxx-jkyy)dxdy, (23)
-0
equation (21) transforms to

4
by 2 ¥ sHx)
*
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- 00

. (24)
(n3-c2(x))x2|g" (8, (X) %) |2

It is next assumed that the integrand is sufficiently constant over the

illuminated area so that,
If(x)dx ~ AXE(X), (25)

where AX is the pulse length and X the range to the midpoint of the il-
luminated area. The final integral reduction of equacion (24) is made by
replacing dY by X d¢ and by assuming a Gaussian azimuthal beam pattern with a

3 dB half width, ¢°. Subject to these assumptions, equation (24) becomes
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2k,0) &% ,

%Re<E§S)H§S)*> . K —1'—]1/2 (26)

nx |1n2

where ¢ is in radians and the explicit dependency of So+ Cy» and 8, on X has

been dropped. The minus sign in equation (26) simply signifies propagation in
the negative x direction and is dropped from this point on. To convert to
path loss equation (26), as discussed in reference 1, is multiplied by the

factor

%_lg_[lmeo]2 , (27)

thereby giving

PL(dB)~ -10Logy, {1.&86x102f§h¢ow(2k,o) (28)

X(n2-c )lg“(e )| }

Note that in equation (28) the replacement S°=9° has been made. Also, fgh is

the frequency in GHz. The spectrum function w(kx’ky) equals wp(k)/k where

k-(ki + kg)l/2 and wp is the Pierson spectrum%o

Long surface wavelength effects are allowed for by first multiplying the

argument of the logarithm of equation (28) by the Wagner shadowing functionll,

c(eo), as discussed in reference 1. Next, surface tilting effects are ap-

proximately allowed for by replacing 8, in the numerator of equatiovn (28) by

1/4

(8, +(qa) ) where (174)u is the fourth power of the long wavelength sea sur-

face slope averaged over the unshadowed portion of the surface. This

averaging could be improved upon but is adequate for the examples considered




for which 6,< 2x10'2 rad and (04)1‘44 > 0.13 rad. Calculation of ("h)il i

discussed in references 1 and 11l.

Including the long surface wavelength effects in equation (28) via the

methods just described gives,

“4,1/6.4
(0,+(n")j7)" ax

x(n2-c2)[g"e,) |2

PL(dB)= ~10Loglo{1.686x102f§h¢°w(2k,o)c(9°) . (29)

III RESULTS

Based on a parabolic equation method, Tappert has given backscatter
results for a single surface realizaticn for the standard atmosphere and for

two evaporation ducts. The latter were characterized by duct heights of 14

and 28 m and have been described by Hitney? Tappert’s calculations apply to a
frequency of 9.6 GHz, a transmitter height of 25 m, a pulse width of 1.0 us

(in our convention AX=c722with c the speed of light and r pulse width) and a
3 dB full beam width of 1.2°. Results for wind speeds of 10, 20, 30, and 40

knots were given. In a subsequent study],' waveguide calculations for the
average backscatter levels were compared with Tappert’s results. Those com-
parisons indicated reasonable agreement for the average fields for the ducted
cases for ranges beyond about 8 km. At shorter ranges the waveguide results
broke down. In the nonducting cases, that is the standard atmosphere cases,
the waveguide resuits were about 10 dB high relative to the parabolic equation
results. This did not seem surprising since the application of shadowing no-
tions used in conjunction with waveguide concepts were most suspect for the
standard atmosphere cases because the dominant mode is evanescent at the

ground. That is to say, the real part of the eigenangle for the dominant mode

is 8.06 x 10°% rad while the imaginary part is 1.40 x 1073 rad. This can be




contrasted with the ducting cases. The real part of the eigenangle for the
dominant mode for the 14 m duct is about 4.75 x 10°3 rad for the four

windspeeds and the imaginary parts are less than 4 x 10'5 rad for the four

windspeeds. For the 28 m duct, the real part of the eigenangle for the

dominant mode is about 7 x 10'3 rad and the imaginary parts are less than 3 x

5

10" rad for the four wind speeds. Thus, ray notions such as shadowing are

eminently more reasonable for the ducting environments.

In the present study, the above comparisons are supplemented with cal-
culations based entirely upon ray concepts as discussed in section II.
Figures 1 through 4 show comparisons of the three methods for the standard at-
mosphere and the four wind speeds. Ray results for the average backscatter
agree well with the parabolic equation results out to ranges between about 5
and 10 km depending upon wind speed. They generally intersect the waveguide
results at ranges slightly in excess of 10 km and give larger results than the
other two methods beyond there and out to the horizon (=20.6 km). It is not
absolutely clear which results are to be believed. However, as mentioned
above, the waveguide calculations are suspect in the standard atmsophere case.
On the other hand, the parabolic equation results have no range or profile
limitation and exhibit the greatest degree of continuity for the average
field. It will, therefore, be assumed that the parabolic equation results are
to be preferred. Failure of ray theory is expected as the shadow boundary is
approached. However, it is not known to the author whether or not, for the
conditions of figures 1 through 4, that failure would be expected to occur
more than 10 km from the shadow boundary. Clearly a criterion is needed to
establish the region of validity of the ray theory. 1If such a criterion indi-
cated ray failure only for ranges closer to the horizon, then, the most likely
explanation for the calculated onset of ray theory departure from the

parabolic equation results would be failure of the shadowing theory.

10




The rapid change in signal level close to the horizon, which is evident
in figures 1 through 4, may be traced to a rapld decrease in the relative
value of the grazing angle (and concomitant decrease in the shadowing

function) as the horizon is approached.

As a typical case, figure 5 shows path loss comparisons between the ray
and waveguide methods for the 14 m duct with a 20 knot wind. In this case the
extended radio horizon is about 61 km and the waveguide calculatioﬁ should be
valid beyond about 5 km. As figure 5 shows, departure between the two cal-
culations sets in at about 40 km. Again, it is not known why departure of the
ray calculation from the waveguide calculation begins so far (=20 km) from the
radio horizon. (Nevertheless, there is clearly a large range, =40 km, over

which ray theory gives acceptable results).

Figures 6 through 9 show comparisons of the three methods for the 14 m
duct and the four wind speeds. Unlike figure 5, the range axis only extends
to 40 km. 1In all cases, average fields determined by the three methods agree

to better than 10 dB over their regions of validity.

As a representative case, figure 10 shows path loss comparisons between
the ray and waveguide methods for the 28 m duct with a 20 knot wind. In this
case, the extended radio horizon is about 81 km and the waveguide calculation
should be valid beyond about 5 km. As was the case with the 14 m duct, depar-
ture between the two calculations sets in at about 40 km. For ranges less
than that the two methods agree quite well in their overlapping regions of
validity. As with the 14 m duct, it is not known why departure of the ray
calculation from the waveguide calculation begins so far (=40 km) from the

shadow boundary.

As an academic curiosity, there is a modal interference null at about 68
km indicated in the waveguide result. It would be interesting to know if a

comparable null showed up in the parabolic equation method.

11




Figures 11 through 14 show comparisons of the three methods for the 28 m
duct and the four wind speeds. Unlike figure 10, the range axis only extends
to 40 km. In all cases, average fields determined by the three methods agree

to better than 10 dB over their range of validity.

IV DISCUSSION

In this study, backscatter results based on ray theory have been gener-
ated at 9.6 GHz for a transmitter altitude of 25 m. The standard atmosphere
along with evaporation ducts of 14 and 28 m have been considered for wind
speeds of 10, 20, 30, and 40 knots. Only horizontal polarization has been
considered in the high conductivity limit. Expectations are that vertical
polarization would behave in a similar fashion in this 1limit, though this
should be checked.

Ray theory results for the average clutter power have been compared with
parabolic equation results of Tappert and waveguide results of an earlier

study} Unlike the parabolic equation method, the ray and waveguide calcula-

tions, based on first order scatter theory, ylield only estimates of the
average clutter power. The parabolic equation method also yields estimates
for the variance of the backscatter power. Higher order scatter theory is re-
quired to estimate variances via ray or waveguide models. Average clutter
powers via ray and waveguide models have been calculated using the Pierson sea
spectrum while the parabolic equation results of Tappert were obtained using a

different spectrum.

Ray and parabolic equation results for the standard atmosphere agree out
to ranges between 5 and 10 km depending upon windspeed. In these cases the
ray and waveguide results do not continuously blend into each other.
Comparison of the three methods for the 14 and 28 m ducting environments indi-

cates agreement to better than 10 dB over a 40 km range (waveguide results

12




break down for ranges less than about 8 km - the other methods are not
restricted by this limitation). Ray calculations, of course, require less cpu
time than the other two methods. However, a criterion for validity of the ray

method, as the shadow boundary is approached, is needed.

Further comparisons of the methods should be made along with comparisons
with experimental data. Since there are many dB uncertainties in the sea
spectrum values, it is likely that constants or correction factors can be

determined empirically to yield best results with the latter.

Acknowledgement: The author wishes to thank Ms. L. R. Hitney for programming

assistance.
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